Journal of

The Chemical Society,

Chemical Communications

NUMBER 8/1977

20 APRIL

Stereochemistry and Mechanism of Cleavage of the Platinum–Carbon σ-Bond by Peroxy Acid

By IAN J. HARVIE and FRANCIS J. McQuillin

(Department of Organic Chemistry, The University, Newcastle upon Tyne NE1 7RU)

Summary With *m*-chloroperbenzoic acid [(PhCHD)PtCl-(PPh₃)₂] yields [²H]benzyl *m*-chlorobenzoate and [²H]benzyl alcohol with retention of stereochemistry at carbon, and the ratio of *m*-chlorobenzoate: alcohol product on oxidation of [(ArCH₂)PtCl(PPh₃)₂] (Ar = Ph or p-NO₂C₆H₄) and of cis-[Buⁿ₂Pt(PPh₃)₃] depends on the polarity of the group which is cleaved; in [RhH(CO)-(PPh₃)₃] the hydride is cleaved by Bu^tO₂H.

WE have reported¹ oxidative cleavage by hydroperoxides of carbonyl, triphenylphosphine, and carbon σ -bonds in various transition metal complexes. We were led to envisage a process of addition of hydroperoxide RO₂H, as fragments RO and HO, followed by an elimination step. However, the incidence of electron-transfer processes in transition metal complex-catalysed hydroperoxide decomposition,² and in other reactions of transition metal complexes³ raised uncertainty as to the precise reaction mechanism. We have therefore determined the stereochemistry of cleavage of the Pt-carbon σ -bond as being likely to offer more decisive information.

(S)-(+)-[²H] Benzyl chloride,⁴ (77% ²H), $[\alpha]_{\rm D} + 1.22^{\circ}$, with [Pt(PPh₃)₄] gave [(PhCHD)PtCl(PPh₃)₂], m.p. 198— 200 °C, τ 2.43 and 7.60 ($J_{\rm Pt-H}$ 80 Hz). This complex with *m*-chloroperbenzoic acid in benzene under nitrogen gave an orange solution from which *m*-ClC₆H₄CO₂CHDPh (77% ²H), *m/e* 249 and 247, τ 1.73—2.40 (9H), 4.67 (1.2H), $[\alpha]_{\rm D}$ -2.18°, could be isolated by chromatography. The parent [²H₁] benzyl alcohol with *m*-chlorobenzoyl chloride and pyridine gave *m*-ClC₆H₄CO₂CHDPh, $[\alpha]_{\rm D} + 2.13^{\circ}$, characterised by mass and n.m.r. spectroscopy. The oxidation reaction also yielded $[{}^{2}H_{1}]$ benzyl alcohol (m.s., n.m.r.), $[\alpha]_{D} - 0.69^{\circ}$, from a sample of the platinum complex derived from PhCHDCl, $[\alpha]_{D} + 0.94^{\circ}$.

Stepwise oxidation of $[(PhCH_2)PtCl(PPh_3)_2]$ in benzene, followed by n.m.r. spectroscopy, showed simultaneous progressive formation of benzyl alcohol and benzyl *m*chlorobenzoate, *i.e.* both appear to be primary products of oxidation, and Pt-carbon bond cleavage competes effectively with phosphine oxidation.

There is sound precedent⁶ for anticipating reaction of (S)-(+)-PhCHDCl and $[Pt(PPh_3)_4]$ with inversion of stereochemistry at carbon. The (S)-benzyl derivatives PhCHDX, where X = OH, Cl, or m-ClC₆H₄CO₂, exhibit optical rotations in the same sense. The $[\alpha]_D$ values for m-ClC₆H₄CO₂CHDPh, noted above, therefore indicate oxidative cleavage of the Pt-benzyl bond with retention of configuration, and effectively stereospecifically. The $[\alpha]_D$ of the isolated [²H] benzyl alcohol also indicates cleavage with retention, and, if allowance is made for the rather lower optical purity of the [²H]benzyl chloride used, and for possible racemisation of the alcohol during chromatography, again with something approaching stereospecificity.⁶

These results sustain an addition-elimination mechanism, and give no support to electron transfer as an important process in this oxidation reaction.

Competitive oxidation of $[(ArCH_2)PtCl(PPh_3)_2]$ (Ar = Ph or p-NO₂C₆H₄) gave additional information. The complex (Ar = p-NO₂C₆H₄), m.p. 244-246 °C, τ 2·0-2·7, 6·82 (t of t, J 76 and 5 Hz), with m-chloroperbenzoic acid gave p-NO₂C₆H₄CH₂X (X = HO and m-ClC₆H₄CO₂) (3:1). The two complexes at equimolar concentration were found, by integration of proton n.m.r. signals, to be oxidised competitively by the peracid at almost exactly the same rate, *i.e.* alkyl bond polarity does not markedly influence the rate of the overall process. However, from these two complexes the ratios ArCH₂OH: m-ClC₆H₄CO₂CH₂Ar differed, viz. 0.5 for Ar = Ph, 3 for Ar = p-NO₂C₆H₄, and cis-[Buⁿ₂Pt- $(PPh_3)_2$]⁷ on oxidation gave n-butyl *m*-chlorobenzoate and only a trace of n-butanol. Hence alkyl group polarity may influence the relative energetics of transfer of the HO and m-ClC₆H₄CO₂ groups, or the geometry of addition of peracid.

We have also extended our previous observations¹ of oxidation with t-butyl hydroperoxide to include the hydride

ligand. Progressive addition of Bu^tO₂H to [RhH(CO) $(PPh_3)_3$ in benzene resulted in parallel loss of v_{RhH} at 2057 cm⁻¹, movement of v_{co} from 1914 to 1971 cm⁻¹, and the appearance of bands at 1120 and 1180 cm^{-1} due to Ph₃PO. Excess (3 equiv.) of hydroperoxide led to loss of v_{co} at 1971 cm⁻¹. Oxidation was also monitored by disappearance of the Rh-H signal at τ 19.3. t-Butyl hydroperoxide also oxidises the complexes [(ArCH₂)PtCl(PPh₃)₂] with formation of ArCH₂OH (Ar = Ph or p-NO₂C₆H₄), but less efficiently than *m*-chloroperbenzoic acid.

(Received, 24th January 1977; Com. 060.)

¹ I. J. Harvie and F. J. McQuillin, J.C.S. Chem. Comm., 1976, 369.

² B. L. Booth, R. N. Haszeldine, and G. R. H. Neuss, J.C.S. Perkin I, 1975, 209.

³ Cf. J. A. Labinger, A. V. Kramer, and J. A. Osborn, J. Amer. Chem. Soc., 1973, 95, 7908; A. V. Kramer and J. A. Osborn, *ibid.*, 1974, 96, 7832; M. F. Lappert and P. W. Lednor, J.C.S. Chem. Comm., 1973, 948; J. A. Connor and P. I. Riley, *ibid.*, 1976, 634.
⁴ D. J. Bennett, G. W. Kirby, and V. A. Moss, Chem. Comm., 1967, 218; V. E. Althouse, D. M. Feigl, W. A. Sanderson, and H. S. Mosher, J. Amer. Chem. Soc., 1966, 88, 3595; J. L. Rice, R. H. Engelbrecht, and N. E. Pawlowski, *ibid.*, 1965, 87, 6131.

⁶ P. K. Wong, K. S. Y. Lau, and J. K. Stille, *J. Amer. Chem. Soc.*, 1974, 96, 5956. ⁶ Cf. D. N. Jones and S. D. Knox, *J.C.S. Chem. Comm.*, 1975, 166.

⁷ G. M. Whitesides, J. F. Gaash, and E. R. Stedronsky, J. Amer. Chem. Soc., 1972, 94, 5258.